Abstract: A selective magnetic molecularly imprinted polymer (MMIP) was synthetized with 4-chloro-2-methylphenoxyacetic acid as template and 4-vinylpiridine as monomer in presence of vinylized magnetite nanoparticles. Scanning electron microscopy, nitrogen adsorption-desorption isotherms, Fourier transform infrared spectrometry and vibrating sample magnetometry were applied to characterize the resulting material. The synthesized MMIP was applied as sorbent in magnetic molecularly imprinted solid-phase extraction (MMISPE) for selective extraction of a mixture of the five herbicides 4-chloro-2-methylphenoxyacetic acid (MCPA), 4-(4-chloro-2-methylphenoxy)butyric acid (MCPB), mecoprop (MCPP), fenoxaprop (FEN) and haloxyfop (HAL). Several parameters affecting the extraction conditions were optimized to achieve the best extraction performance. The best MMISPE combined with HPLC-DAD gave detection and quantification limits between 0.33 and 0.71 μg L-1 and 1.1-2.4 μg L-1, respectively, were obtained. The precision of the whole method provided RSD values below 7.3%, and the accuracy was demonstrated by the analysis of several water samples of different origins, with recoveries ranged from 77 to 98%. Moreover, a remarkable re-usability of the MMIP sorbent, more than 65 uses without losses in extraction capacity, was obtained
Author keywords: Phenoxyacid herbicides, Magnetic molecularly imprinted solid-phase extraction, Molecularly imprinted polymer, Magnetic nanoparticles, HPLC, Water samples