Abstract: A method based on molecular imprinting technique was presented for preparing protein-imprinted agarose gel membrane (AGM) under moderate conditions, and the influencing factors such as molecular weights and modified chemical groups on the adsorption ability and selectivity of AGMs were investigated. The agaroses used for AGMs were prepared through ultrasonic degradation, oxidation degradation, gel-melting method, and sulfation, respectively. Bovine serum albumin (BSA) and hemoglobin were selectively recognized on AGMs. Results showed that the molecular weight was the most crucial influencing factor for the protein recognition ability of AGMs. The lower and upper limit of molecular weight was 100 and 130 kDa, respectively, where the AGMs could maintain both good mechanical strength and high recognition ability, with K value around 4.0. The enhancement of ionic strength could make the imprinting effect disappeared even when the concentration of salt was as low as 2 mmol/L. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40323
Template and target information: protein, bovine serum albumin, BSA, hemoglobin
Author keywords: Biomaterials, molecular imprinting, biomimetic, membranes