Abstract: Introduction: Fungal keratitis, a potentially blinding disease, has been difficult to treat due to the limited number of approved antifungal drugs and the taxing dosing regimen. Thus, the development of a contact lens (CL) as an antifungal drug delivery platform has the potential to improve the treatment of fungal keratitis. A CL can serve as a drug reservoir to continuously release drugs to the cornea, while limiting drug loss through tears, blinking, drainage and non-specific absorption. Areas covered: This review will provide a summary of currently available methods for delivering antifungal drugs from commercial and model CLs, including vitamin E coating, impregnated drug films, cyclodextrin-functionalized hydrogels, polyelectrolyte hydrogels and molecular imprinting. This review will also highlight some of the main factors that influence antifungal drug delivery with CLs. Expert opinion: Several novel CL materials have been developed, capable of extended drug release profiles with a wide range of antifungal drugs lasting from 8 h to as long as 21 days. However, there are factors, such as first-order release kinetics, effectiveness of continuous drug release, microbial resistance, ocular toxicity and potential complications from inserting a CL in an infected eye, that still need to be addressed before commercial applications can be realized
Template and target information: Review - ocular delivery of antifungal agents
Author keywords: antifungal, contact lens, cornea, hydrogel, ocular drug delivery