Abstract: Food security as a world issue has received increasing concern, and therefore, effective analytical methods and technologies have been continuously developed. However, the matrix complexity of food samples and the trace/ultratrace presence of targeted analytes require highly efficient cleanup and enrichment materials and procedures. Molecularly imprinted polymers (MIPs) with specific recognition abilities as versatile materials are being increasingly developed for diverse species in various fields, especially in food analysis. In this review, we mainly summarize the recent advances in MIPs used for food matrices over the last 5 years. We focus on toxic and harmful substances, such as pesticide/drug residues, heavy metals, microbial toxins, and additives. Some relatively new preparation methods involving surface imprinting, composites, and stimuli responsiveness are reviewed. Different MIPs as solid-phase adsorbents in solid-phase extraction, solid-phase microextraction, matrix solid-phase dispersion, stirring bar sorptive extraction, and magnetic material extraction and as stationary phases in chromatographic separation for foodstuff have been comprehensively summarized. MIP-based biomimetic sensing and enzymelike catalysis receive special attention. Moreover, some limitations and comparisons related to MIPs performances are also discussed. Finally, some significant attempts to further promote MIP properties and applications to ensure food safety are discussed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40766
Template and target information: Review - MIPs in food analysis
Author keywords: adsorption, applications, functionalization of polymers, molecular recognition, stimuli-sensitive polymers