Abstract: Inorganic-framework molecularly imprinted TiO2/SiO2 nanocomposite (MIP-TiO2/SiO2) was successfully prepared by sol-hydrothermal method using 4-nitrophenol as template. The morphology, structure, optical property, zeta-potential and photocurrent of MIP-TiO2/SiO2 were characterized. The adsorption performance and photocatalytic selectivity were also studied. MIP-TiO2/SiO2 shows higher adsorption capacity and selectivity than the non-imprinted TiO2/SiO2 (NIP-TiO2/SiO2). Kinetics results show that the adsorption equilibrium of 4-nitrophenol on MIP-TiO2/SiO2 is established within 20 min, and the adsorption process obeys the pseudo-second-order model. Moreover, MIP-TiO2/SiO2 can completely degrade 4-nitrophenol within 30 min, while NIP-TiO2/SiO2 takes 110 min. It was found that the MIP-TiO2/SiO2 photocatalyst shows molecular recognition ability, leading to selective adsorption and molecular recognitive photocatalytic degradation of 4-nitrophenol. Furthermore, because of its inorganic framework, MIP-TiO2/SiO2 shows excellent reusability
Template and target information: 4-nitrophenol, p-nitrophenol
Author keywords: Molecularly imprinted photocatalyst, TiO2, SiO2 nanocomposite, Sol-hydrothermal method, molecular recognition, Photocatalytic ability