Abstract: Protein imprinting in hydrogels is a method to produce materials capable of selective recognition and capture of a target protein. Here we report on the imprinting of fluorescently-labeled maltose binding protein (MBP) in acrylamide (AAm)/N-isopropylacrylamide (NIPAm) hydrogels. The targeting efficiency and selectivity of protein recognition is usually characterized by the imprinting factor, which in the simplest case is the ratio of protein uptake in an imprinted film divided by the uptake by the corresponding non-imprinted film. Our objective in this work is to study the dynamics of protein binding and elution in imprinted and non-imprinted films to elucidate the processes that control protein recognition. Protein elution from imprinted and non-imprinted films suggests that imprinting results in sites with a distribution of binding energies, and that only a relatively small fraction of these sites exhibit strong binding
Template and target information: protein, maltose binding protein, MBP
Author keywords: protein imprinting, polyacrylamide, hydrogel, Maltose binding protein