Abstract: This paper reports real-time explosive gas sensing (DNT) in atmospheric pressure utilizing the noise squeezing effect that occurs before a bifurcation event. A noise-squeezing controller based on the statistics of phase noise is implemented using high-speed LabVIEW field programmable gated array. A high frequency TNT-molecularly imprinted fixed-fixed microbeam sensor utilizes this nontraditional sensing strategy and performs DNT sensing at various concentrations. Experiments are conducted using both noise-based and sweep-based bifurcation tracking for a direct comparison. Results demonstrate noise-based bifurcation tracking is not only capable of performing reliable frequency tracking, but also show the method is superior to the bifurcation sweep-based tracking. Over three orders of magnitude improvement in acquisition rate is achieved, and as a result, confidence and precision on bifurcation frequency estimation is significantly improved over the bifurcation sweep tracking method, enabling DNT sensing at concentrations much below sub-ppb (parts-per-billion) level
Template and target information: dinitrotoluene, DNT
Author keywords: Bifurcation, Field programmable gate arrays, Frequency control, Micromechanical devices, Phase noise, sensors, mass sensing, noise squeezing