Abstract: In this study, oligo(ethylene glycol) (OEG)-based thermoresponsive molecularly imprinted polymers (MIPs) for lysozyme on the surface of magnetic nanoparticles were synthesized. Thermoresponsive monomer 2-(2-methoxyethoxy)ethyl methacrylate, chelate monomer N-(4-vinyl)-benzyl iminodiacetic acid, and acidic monomer methacrylic acid were selected as the ingredients for preparing the MIP layer. The thermoresponsive behavior of the novel imprinted magnetic nanoparticles was evaluated by dynamic light scattering and swelling ratios measurements. Interestingly, in analysis of lysozyme, the capture/release process could be modulated by changing the temperature, avoiding tedious washing steps. Meanwhile, high adsorption capacity (204.1 mg/g) and good selectivity for capturing lysozyme were achieved. Additionally, surface imprinting with magnetic nanoparticles as substrate allowed for short adsorption time (2 h) and rapid magnetic separation. Furthermore, the proposed imprinted magnetic nanoparticles were used to selectively extract lysozyme in human urine with recoveries ranging from 89.2% to 97.3%. The results indicated that the OEG-based monomers are promising for responsive MIP preparation, and the proposed imprinted material is efficient for thermally modulated capture and release of target protein
Template and target information: protein, lysozyme
Author keywords: oligo(ethylene glycol)-based monomers, thermoresponsive molecularly imprinted polymer, magnetic nanoparticles, surface imprinting, lysozyme