Abstract: Molecularly imprinted polymers (MIPs) were synthesized by imprinting a new template - S(-)-1,1'-binaphthalene-2,2'-diamine (S-DABN) and applied as chiral stationary phases for chiral separation of DABN racemates by high-performance liquid chromatography (HPLC). The influence of some key factors on the chiral recognition ability of MIPs, such as the type of functional monomers and porogen and the molar ratio of template to monomer, was systematically investigated. The chromatographic conditions, such as mobile phase composition, sample loading, and flow rate, were also measured. The chiral separation for DABN racemates under the optimum chromatographic conditions by using MIP chiral stationary phase (CSP) of P3, prepared with the S-DABN/MAA ratio = 1/4 and used acetonitrile (2 mL) and chloroform (4 mL) as porogen, showed the highest separation factor (2.14). Frontal analysis was used to evaluate affinity to the target molecule of MIPs. The binding sites ( B t ) of MIPs and dissociation constant ( K d ) were estimated as 4.56 μmol g-1 and 1.40 mmol L-1 , respectively. In comparison with the previous studies, this approach had the advantages, such as the higher separation factor, easy preparation, and cost-effectiveness, it not only has the value for research but also has a potential in industrial application
Template and target information: S(-)-1,1'-binaphthalene-2,2'-diamine, S-DABN
Author keywords: 1,1'-binaphthalene-2,2'-diamine, chiral recognition, HPLC, Molecularly imprinted polymers