Abstract: The novel reductive graphene oxide-based magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) polymers (rGO@m-MIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs) in fish samples. rGO@m-MIPs was prepared by surface molecular imprinting technique. Besides, Fe3O4 nanoparticles (NPs) were employed as magnetic supporters, and rGO@Fe3O4 was in situ synthesis. Different from functional monomer and cross-linker in traditional molecularly imprinted polymer, here, 3,4-dichlorobenzidine was employed as dummy molecular and poly(ethylene-co-vinyl alcohol) was adopted as the imprinted polymers. After morphology and inner structure of the magnetic adsorbent were characterized, the adsorbent was employed for disperse solid phase extraction toward PCBs and exhibited great selectivity and high adsorption efficiency. This material was verified by determination of PCBs in fish samples combined with gas chromatography-mass spectrometry (GC-MS) method. According to the detection, the low detection limits (LODs) of PCBs were 0.0035-0.0070 μg l-1 and spiked recoveries ranged between 79.90 and 94.23%. The prepared adsorbent can be renewable for at least 16 times and expected to be a new material for the enrichment and determination of PCBs from contaminated fish samples. Copyright © 2015 John Wiley & Sons, Ltd
Template and target information: dummy template, 3,4-dichlorobenzidine, PCBs
Author keywords: Magnetic molecularly imprinted polymers, polychlorinated biphenyls, poly(ethylene-co-vinyl alcohol, Gas chromatography-mass spectrometry, Fish