Abstract: A novel opal closest-packing (OCP) photonic crystal-á(PC) was prepared by the introduction of molecular imprinting technique into the OCP PC. This molecular imprinted (MI)-OCP PC was fabricated via a vertical convective self-assembly method using 17β-estradiol (E2) as template molecules for monitoring E2 in aqueous solution. Morphology characterization showed that the MI-OCP PC possessed a highly ordered three-dimensional (3D) periodically-ordered structure, showing the desired structural color. The proposed PC material displayed a reduced reflection intensity when detecting E2 in water environment, because the molecular imprinting recognition events make the optical characteristics of PC change. The Bragg diffraction intensity decreased by 19.864 a.u. with the increase of E2 concentration from 1.5 ng mL-1 to 364.5 ng mL-1 within 6 min, whereas there were no obvious peak intensity changes for estriol, estrone, cholesterol, testosterone and diethylstilbestrol, indicating that the MI-OCP PC had selective and rapid response for E2 molecules. The adsorption results showed that the OCP structure and homogeneous layers were created in the MI-OCP PC with higher adsorption capacity. Thus, it was learned the MI-OCP PC is a simple prepared, sensitive, selective, and easy operative material, which shows promising use in routine supervision for residue detection in food and environment
Template and target information: 17β-estradiol, E2
Author keywords: 17β-estradiol, aqueous solution, molecular imprinting, Opal closest-packing photonic crystal