Abstract: A novel, facile and low cost process for imprinting protein on the surface of magnetic multiwalled carbon nanotubes (MMWNTs) was developed using human serum albumin (HSA) as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized with transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier-transform infrared spectrometry (FT-IR), vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA) in detail. The maximum adsorption capacity of the magnetic imprinted polymers toward HSA was 66.23 mg g-1 and it took 20 min to achieve the adsorption equilibrium. The magnetic imprinted polymers exhibited the specific selective adsorption toward HSA. Coupled with high performance liquid chromatography (HPLC) analysis, the magnetic imprinted polymers were used to solid-phase extract and detect HSA in urine samples successfully with the recoveries of 91.95-97.8%
Template and target information: protein, human serum albumin, HSA
Author keywords: molecularly imprinted, Polydopamine, human serum albumin, MWNTs, Magnetic solid phase extraction