Abstract: Melamine was chosen as template, methacrylic acid was chosen as functional monomer, and divinylbenzene, ethylene glycol dimethacrylate, trimethylolpropane trimethylacrylate were chosen as cross-linking agents, respectively. The WB97XD/6-31G(d, p) method was used to calculate the geometry optimization of the different imprinting ratios, the action sites, the bonding situation, and the optimization of the cross-linking agents. The nature of the imprinting effect was also studied by the atoms in molecules theory. The theoretical results showed that melamine interacts with methacrylic acid by hydrogen bonding, and the melamine molecularly imprinted polymers with a molar ratio of 1:6 have the most hydrogen bonds and the most stable structure. Divinylbenzene is the best cross-linking agent for the melamine molecularly imprinted polymers. The melamine molecularly imprinted polymers were synthesized by precipitation polymerization. The results showed that the maximum adsorption capacity for molecularly imprinted polymers towards melamine is 19.84 mg/g, and the adsorption quantity of the polymers to melamine is obviously higher than that of cyromazine, cyanuric acid, and trithiocyanuric in milk. This study could provide theoretical and experimental references for the screening of the imprinting ratio and the cross-linking agent for the given template and monomer system
Template and target information: melamine
Author keywords: computer simulation, Cross-linking agents, functional monomers, Melamine, Molecularly imprinted polymers