Abstract: Nanosized carbon dots (CDs) are emerging as superior fluorophores for biosensing and a bioimaging agent with excellent photostability, chemical inertness, and marginal cytotoxicity. This paper reports a facile one-pot strategy to immobilize the biocompatible and fluorescent CDs (~6 nm) into the glucose-imprinted poly(N-isopropylacrylamide-acrylamide-vinylphenylboronic acid) [poly(NIPAM-AAm-VPBA)] copolymer microgels for continuous optical glucose detection. The CDs designed with surface hydroxyl/carboxyl groups can form complexes with the AAm comonomers via hydrogen bonds and, thus, can be easily immobilized into the gel network during the polymerization reaction. The resultant glucose-imprinted hybrid microgels can reversibly swell and shrink in response to the variation of surrounding glucose concentration and correspondingly quench and recover the fluorescence signals of the embedded CDs, converting biochemical signals to optical signals. The highly imprinted hybrid microgels demonstrate much higher sensitivity and selectivity for glucose detection than the nonimprinted hybrid microgels over a clinically relevant range of 0-30 mM at physiological pH and benefited from the synergistic effects of the glucose molecular contour and the geometrical constraint of the binding sites dictated by the glucose imprinting process. The highly stable immobilization of CDs in the gel networks provides the hybrid microgels with excellent optical signal reproducibility after five repeated cycles of addition and dialysis removal of glucose in the bathing medium. In addition, the hybrid microgels show no effect on the cell viability in the tested concentration range of 25-100 μg/mL. The glucose-imprinted poly(NIPAM-AAm-VPBA)-CDs hybrid microgels demonstrate a great promise for a new glucose sensor that can continuously monitor glucose level change
Template and target information: glucose
Author keywords: Carbon dots, molecular imprinting, hybrid microgels, Glucose sensing, physiological pH