Abstract: The synthesis of ionic imprinted polymer-Fe membrane using eugenol derivative (polyeugenol) had been done followed by its utilization study as functional polymer for selective transport of Fe(III). Eugenol was polymerized using BF3-diethyl ether as catalyst. The polyeugenol was then bounded with an ion template [Fe(III)] followed by in situ crosslinking with polyethylene glycol diglycidyl ether and membrane base poly(vinyl alcohol) (PVA, Mr = 125,000) in 1-methyl-2-pyrrolidone. A membrane was obtained after casting at 25 m/s and soaking in NaCl solution for 2 days. The membrane soaked further in 0.1 M HCl solution to release Fe(III). The membrane was then analyzed using IR spectrometry, TGA-DTA, SEM and size selective test. Different optimizations steps were carried out for both the synthesis conditions and transport experiments. The selectivity of ionic imprinted polymer membrane for Fe(III) was studied using Cr(III), in separated systems with Cr(III) and Fe(III) in different solutions as well as using binary mixture solutions of the two metals. Experimental results indicate that the crosslinked ionic imprinted polymer membranes are more selective than non-imprinting polymers and as well as its constituents.
Template and target information: ferric ion, Fe(III)
Author keywords: Fe-ionic imprinted polymer membrane, Polyeugenol, Fe(III), selectivity