MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Pan SD, Chen XH, Li XP, Cai MQ, Shen HY, Zhao YG, Jin MC
Article Title: Double-sided magnetic molecularly imprinted polymer modified graphene oxide for highly efficient enrichment and fast detection of trace-level microcystins from large-volume water samples combined with liquid chromatography-tandem mass spectrometry.
Publication date: 2015
Journal: Journal of Chromatography A
Volume: 1422
Page numbers: 1-12.
DOI: 10.1016/j.chroma.2015.10.007
Alternative URL: http://www.sciencedirect.com/science/article/pii/S0021967315014508

Abstract: Microcystins (MCs), a group of cyclic heptapeptide heaptoxins and tumor promoters, are generated by cyanobacteria occurring in surface waters, such as eutrophic lakes, rivers, and reservoirs. In this present study, a novel double-sided magnetic molecularly imprinted polymer modified graphene oxide (DS-MMIP@GO) based magnetic solid-phase extraction (MSPE) method was developed for fast, effective and selective enrichment, and recognition of trace MCs in environmental water samples combined with high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The synthesized novel DS-MMIP@GO was used as the adsorbents in this work and was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectra. The adsorption and desorption conditions of DS-MMIP@GO toward MCs were optimized in detail to obtain the highest binding capacity, selectivity, and release efficiency. Under the optimum conditions, the enrichment factors of the method for eight target MCs were found to be 2000. The limits of quantitation (LOQs) of the method for eight MCs were in range of 0.1-2.0 ng L-1. The double-sided MMIP modified structure provided DS-MMIP@GO with abundant adsorption sites and permitted it to exhibit excellent enrichment and selectivity toward trace-level MCs. The proposed method was successfully applied for the analysis of environmental water samples with recoveries ranging from 84.1 to 98.2%. Compared to conventional methods for MCs detection reported in literatures, the one developed in this work based on DS-MMIP@GO and LC-MS/MS showed much faster, more sensitive, and more convenient
Template and target information: microcystins
Author keywords: Double-sided magnetic molecularly imprinted polymer modified graphene oxide, Magnetic solid-phase extraction, trace analysis, microcystins, environmental water, LC-MS, MS


  Eat, sleep, imprint, repeat shirt  SMI logo mug  Woman of proper-tea mug in green






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner