Abstract: Calcium silicate particle containing mesoporous SiO2 (CaSiO3@SiO2) was grafted on the surface of non-woven polypropylene. The PP non-woven grafted calcium silicate containing mesoporous SiO2 (PP-g-CaSiO3@SiO2) was used as the matrix to prepare bovine serum albumin (BSA) molecularly imprinted polysiloxane (MIP) by using silanes as the functional monomers and BSA as the template. PP non-woven grafted BSA-imprinted polysiloxane (PP-g-CaSiO3@SiO2 MIP) was characterized by scanning electron microscope (SEM), Fourier transform infrared spectometry (FTIR) and drilling string compensator (DSC). Influence factors on the rebinding capacity of the MIP were investigated, such as grafting degree, the pH in treating CaSiO3 and the type and proportion of silanes. The rebinding properties of BSA on PP-g-CaSiO3@SiO2 and MIP were investigated under different conditions. The results indicated that the rebinding capacity of MIP for BSA reached 56.32 mg/g, which was 2.65 times of NIP. The non-woven polypropylene grafted BSA-imprinted polysiloxane could recognize the template protein and the selectivity factor (β) was above 2.4 when using ovalbumin, hemoglobin and γ-globulin as control proteins. The PP-g-CaSiO3@SiO2 MIP has favorable reusability. Copyright © 2015 John Wiley & Sons, Ltd
Template and target information: protein, bovine serum albumin, BSA
Author keywords: protein molecular imprinting, polysiloxane, mesoporous calcium silicate, graft, non-woven polypropylene