Abstract: A glassy carbon electrode modified with a molecularly imprinted polymer (MIP) containing phenacetin recognition sites is introduced. The phenacetin-selective MIP was synthesised based on the electropolymerisation of pyrrole in a 1:1 (v/v) water/ethanol with HClO4 solution. The MIP-modified electrode showed higher recognition ability in comparison with a bare electrode for procaine and aminopyrine, reported to electrochemically interfere in the quantification of phenacetin in cocaine samples. In addition, the MIP was able to preconcentrate one of the intermediates of the phenacetin electrochemical oxidation, acetaminophen, indicating the possibility of monitoring phenacetin based on the acetaminophen oxidation. The acetaminophen oxidation peak is 15 times more detectable compared to the signal obtained by the non-molecularly imprinted polymer (NIP), and it occurs 450 mV below the phenacetin electrochemical oxidation signal. These achieved characteristics decrease the possibility of interference from other electrochemical reactions that may occur in the same potential range as phenacetin electrochemical process
Template and target information: phenacetin
Author keywords: Electrochemical sensor, molecularly imprinted polymer, cocaine samples, paracetamol, forensic application