Abstract: A fluorescence-based sensor that combines the merits of quantum dots (QDs) and molecularly imprinted polymers (MIPs) was first fabricated on a glass substrate via a sol-gel route. Some of the key performance factors, including silane selection, substrate etching, the reaction times of glass silanization and sol-gel polymerization, and the times and methods used for template stripping and loading, were discussed and determined. After fabricating the sensor on either a 3-aminopropyltriethoxysilane (APS) or a 3-mercaptopropyltriethoxysilane (MPS) modified glass substrate, APS showed a much better performance than MPS as both the capping reagent of QDs and the functional monomer of tetracycline-templated MIPs. The APS-QDs on APS-modified glass had a higher imprinted factor (IF = 5.6), a lower LOD (2.1 μM, 3σ), and a more stable signal (2.8%, n = 10 at 70 μM) than those on the MPS-modified glass (IF = 5.2, LOD = 6.5 μM, stability = 6.2%). Furthermore, the recoveries of tetracycline (70 μM) from BSA (133 μg/mL) and FBS (0.66 ppt) by the APS-modified glass were 98% (RSD = 3.5%, n = 5) and 97% (RSD = 5.7%), respectively. For the MPS-modified glass, recoveries of 95% (RSD = 7.2%) and 89% (RSD = 8.7%) were observed at 67 μg/mL of BSA and 0.33 ppt of FBS, respectively
Template and target information: tetracycline
Author keywords: fluorescence, molecularly imprinted polymer, Quantum dots, sol-gel, Tetracycline