MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Yu YJ, Zhang Q, Chang CC, Liu Y, Yang ZH, Guo YC, Wang YT, Galanakis DK, Levon K, Rafailovich M
Article Title: Design of a molecular imprinting biosensor with multi-scale roughness for detection across a broad spectrum of biomolecules.
Publication date: 2016
Journal: Analyst
Volume: 141
Issue: (19)
Page numbers: 5607-5617.
DOI: 10.1039/C6AN01157H

Abstract: The molecular imprinting technique has tremendous applications in artificial enzymes, bioseparation, and sensor devices. In this study, a novel molecular imprinting (MI) biosensor platform was developed for the detection of a broad range of biomolecules with different sizes. Previously this method has been applied to 2D molecular imprinting, where the height of the self-assembled monolayer (SAM) of around 2 nm limited the maximum dimensions of the molecule that can be imprinted to create template-shaped cavities. In order to match the size of the imprinted molecules with the height of the SAM, we propose a model for 3D molecular imprinting where the analyte is sequestered within a niche created by the surface roughness. The SAM is assembled on the walls of the niche, forming a 3D pattern of the analyte uniquely molded to its contour. Surfaces with multi-scale roughness were prepared by evaporation of gold onto electropolished (smooth) and unpolished (rough) Si wafers, where the native roughness was found to have a normal distribution centered around 5 and 90 nm respectively. Our studies using molecules with size ranging on a nanometer scale, from proteins of a few nanometers to bacteria of hundreds of nanometers, showed that when the size of the analyte matched the roughness range of the gold surface, the molecular imprinting process was optimized for the best biosensing performance. After optimization, the MI biosensor platform enabled the identification and quantification of a broad range of biomolecules with great discrimination abilities. Hemoglobin under different pH values and several mutated fibrinogen molecules can also be well differentiated through the test
Template and target information: protein, hemoglobin


  Aluminium periodic table shirt  Scientist peptide mug  I shop perodically customisable tote bag






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner