Abstract: Nanopore molecularly imprinted polymers and membranes for selective separation of 2,4-dichlorophennoxyacetic acid were prepared using 2,4-dichlorophennoxyacetic acid as a template molecule, methacrylic acid as a functional monomer and trimethylolpropane trimethacrylate as a cross linker. Recognition properties of molecularly imprinted membranes were evaluated by performing binding experiments with analog phenoxyacetic acid. Flux, permeability, and permselectivity of the membranes as well as their properties were studied. Molecularly imprinted membrane-2 showed the equilibrium binding capacity of 34.57 mg/g and a selectivity factor of 12.96 toward 2,4-dichlorophennoxyacetic acid at 500 mg/l concentration. Permeability experiments indicated that molecularly imprinted membrane can recognize and absorb 2,4-dichlorophennoxyacetic acid from aqueous solutions selectively
Template and target information: 2,4-dichlorophenoxyacetic acid, 2,4-D
Author keywords: 2,4-dichlorophenoxyacetic acid, molecularly imprinted membrane, nanopore molecularly imprinted polymer, phase inversion, precipitation polymerization