Abstract: To develop a rapid, simple and sensitive method for the determination of human immunodeficiency virus p24 (HIV-p24), a novel molecularly imprinted polymers (MIPs) electrochemical sensor was constructed on the surface of a multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE) by surface polymerization using acrylamide (AAM) as functional monomer, N,N'-methylenebisacrylamide (MBA) as cross-linking agent and ammonium persulphate (APS) as initiator. Each modification step was carefully examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and scanning electron microscope (SEM). The proposed MIPs electrochemical biosensor exhibited specific recognition to HIV-p24 and displayed a broad linear detection range from 1.0 x 10-4 to 2 ng cm-3 with a low detection limit of 0.083 pg cm-3 (S/N = 3). This performance is superior to most HIV-p24 sensors based on other methods. Meanwhile, this sensor possessed of good selectivity, repeatability, reproducibility, stability and was successfully applied for the determination of HIV-p24 in real human serum samples, giving satisfactory results. The accuracy and reliability of the sensor is further confirmed by enzyme-linked immunosorbent assay (ELISA)
Template and target information: virus, human immunodeficiency virus p24, HIV-p24
Author keywords: Human immunodeficiency virus p24, Multi-walled carbon nanotubes, Molecularly imprinted polymers, Electrochemical sensor, Modified Electrode