Abstract: Novel nano-sized dummy-surface molecularly imprinted polymers (DSMIPs) on a magnetic graphene oxide (GO-Fe3O4) surface were developed as substrates, using propionamide as a dummy template molecule for the selective recognition and rapid pre-concentration and removal of acrylamide (AM) from food samples. These products showed rapid kinetics, high binding capacity (adsorption at 3.68 mg g-1), and selectivity (imprinting factor α 2.83); the adsorption processes followed the Langmuir-Freundlich isotherm and pseudo-second-order kinetic models. Excellent recognition selectivity toward acrylamide was achieved compared to structural analogs, such as propionic and acrylic acids (selectivity factor β 2.33, and 2.20, respectively). Moreover, DSMIPs-GO-Fe3O4 was used to quantify acrylamide in food samples, yielding satisfactory recovery (86.7-94.3%) and low relative standard deviation (<4.85%). Thus, our DSMIPs-GO-Fe3O4-based procedure was demonstrated to be a convenient and practical method for the separation, enrichment, and removal of acrylamide from food samples
Template and target information: propionamide, dummy template, acrylamide
Author keywords: acrylamide, magnetic nanoparticles, Graphene oxide, Dummy surface molecular imprinting