Abstract: Molecularly imprinted polymers (MIPs) for erythromycin (ERY) were prepared by precipitation polymerization, using ERY as template molecule, methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as cross-linker and methanol/acetonitrile (1:4, v/v) as porogens. The characterization of the prepared MIPs and non-imprinted polymers (NIPs) were evaluated by scanning electron microscope (SEM) and equilibrium adsorption experiment. The results showed that the MIPs possessed the specific adsorptivity toward ERY. Scatchard analysis revealed that the apparent maximum binding capacity (Qmax) and the dissociation content (Kd) to ERY were as follows: Qmax1=45.24 mg/g, Kd1=0.028 g/L; Qmax2=87.53 mg/g, Kd2=0.20 g/L. Using the prepared MIPs as selective adsorbent, the proposed molecularly imprinted solid phase extraction (MISPE) coupled with high performance liquid chromatography (HPLC) was successfully applied to determine ERY residue in pork samples. A linear correlation was obtained over a range of 0.5-50 mg/L (r2=0.9994), and the limit of detection was 0.2 mg/kg (S/N=3). The spiked recoveries of ERY were 95.2%-104.2% with the relative standard deviations (RSDs) of less than 5%. The proposed method is selective, sensitive and reliable for the analysis of ERY residue in pork samples.
Template and target information: erythromycin, ERY
Author keywords: molecularly imprinted polymers (MIPs), solid phase extraction (SPE), high performance liquid chromatography (HPLC), erythromycin (ERY), Pork samples