Abstract: In this study, cryogel-based implantable molecularly imprinted drug delivery systems were designed for the delivery of antineoplastic agent. Mitomycin C imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-l-glutamic acid) cryogel membranes were produced by free-radical bulk polymerization under partially frozen conditions. The membranes were characterized by swelling tests, Fourier transform infrared spectroscopy, scanning electron microscopy, surface area measurements and in vitro hemocompatibility tests. In vitro delivery studies were carried out to examine the effects of cross-linker ratio and template content. Mitomycin C imprinted cryogel membranes have megaporous structure (10-100 μm in diameter). The cumulative release of mitomycin C was decreased with increasing cross-linking agent ratio and increased with the amount of template in the cryogel structure. The nature of transport mechanism of the mitomycin C from the membranes was non-Fickian
Template and target information: mitomycin C
Author keywords: Cryogel membrane, mitomycin C delivery, molecular imprinting