MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Graniczkowska K, Pütz M, Hauser FM, De Saeger S, Beloglazova NV
Article Title: Capacitive sensing of N-formylamphetamine based on immobilized molecular imprinted polymers.
Publication date: 2017
Journal: Biosensors and Bioelectronics
Volume: 92
Page numbers: 741-747.
DOI: 10.1016/j.bios.2016.09.083
Alternative URL: http://www.sciencedirect.com/science/article/pii/S0956566316309678

Abstract: A highly sensitive, capacitive biosensor was developed to monitor trace amounts of an amphetamine precursor in aqueous samples. The sensing element is a gold electrode with molecular imprinted polymers (MIPs) immobilized on its surface. A continuous-flow system with timed injections was used to simulate flowing waterways, such as sewers, springs, rivers, etc., ensuring wide applicability of the developed product. MIPs, implemented as a recognition element due to their stability under harsh environmental conditions, were synthesized using thermo- and UV-initiated polymerization techniques. The obtained particles were compared against commercially available MIPs according to specificity and selectivity metrics; commercial MIPs were characterized by quite broad cross-reactivity to other structurally related amphetamine-type stimulants. After the best batch of MIPs was chosen, different strategies for immobilizing them on the gold electrode's surface were evaluated, and their stability was also verified. The complete, developed system was validated through analysis of spiked samples. The limit of detection (LOD) for N-formyl amphetamine was determined to be 10 μM in this capacitive biosensor system. The obtained results indicate future possible applications of this MIPs-based capacitive biosensor for environmental and forensic analysis. To the best of our knowledge there are no existing MIPs-based sensors toward amphetamine-type stimulants (ATS)
Template and target information: N-formylamphetamine
Author keywords: Capacitive biosensor, molecular imprinted polymers, N-formyl amphetamine, water analysis


  mipdatabase.com logo special offer joke shirt  Mug featuring the name Sarah spelled out in the single letter amino acid code  HE-MAN polymer chemistry shirt






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner