MIPs logo MIPdatabase      MIP2018 Conference website
Custom Search
Reference type: Journal
Authors: Li N, Liu YJ, Liu F, Luo MF, Wan YC, Huang Z, Liao Q, Mei FS, Wang ZC, Jin AY, Shi Y, Lu B
Article Title: Bio-inspired virus imprinted polymer for prevention of viral infections.
Publication date: 2017
Journal: Acta Biomaterialia
Volume: 51
Page numbers: 175-183.
DOI: 10.1016/j.actbio.2017.01.017
Alternative URL: http://www.sciencedirect.com/science/article/pii/S174270611730017X

Abstract: A novel virus-imprinted polymer for prevention of viral infection was prepared by anchoring molecularly imprinted polymer (MIP) on the surface of poly-dopamine (PDA)-coated silica particles. The imprinting reaction was carried out via self-polymerization of dopamine in the presence of a virus template. Plaque forming assay indicated that the MIP exhibited selective anti-viral infection properties for the template virus in complex media containing different interfering substances, and even other types of viruses. Remarkable dose-dependent and time-dependent inhibition of virus infection was observed due to the MIP's selective binding to the template virus. When the MIP was incubated with the virus and host cells together, rapid and selective adsorption of template viruses by the MIP prevented the viruses to infect the host cells in a period of 12 h. The MIP was biocompatible and non-toxic, and had excellent stability and reusability. Furthermore, the MIPs prepared using different viruses as templates showed similar anti-viral infection properties. The MIP synthesized using dopamine as monomer and crude virus as template provided an attractive possibility for clinical applications in the field of antiviral therapy. Statement of Significance This is the first report to prepare artificial antibody (molecularly imprinted polymer, MIP) that can selectively prevent virus infection using dopamine self-polymerization system. Only MIP anchoring on the surface of poly-dopamine coated silica particles and polymerized using ammonium persulfate as radical initiator showed dose-dependent and time-dependent inhibition of template virus infection in complex media containing interferences and even other viruses. Viruses bond to MIP lost infectious capability. When incubated with virus and host cells, MIP rebond viruses rapidly and selectively to prevent viruses infecting host cells for 12 h. The achieved MIPs were biocompatibility, non-toxicity with excellent stability and reusability, and can be used to different viruses. The bio-mimic MIPs provided an attractive prospect for clinical applications in antiviral therapy
Template and target information: virus, bacteriophage, f2 phage
Author keywords: Virus-imprinted polymer, dopamine, Anti-viral infection, biocompatibility, Toxicity


  Periodic table Crab Cakes - the chemical formula for a fishy snack shirt  Periodic table Bag bag  Meerkat somebody mention coffee mug

Molecules Special Issue call     Sensors Special Issue call






Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:
US listings   UK listings

Searching for Molecular Imprinting books on Amazon.com:
Molecular Imprinting
Imprinted Polymers
Polymer Chemistry
Organic Chemistry
Biosensors

Find what you need at Amazon.com

Lab supplies from Amazon