Abstract: A novel type of molecularly imprinted polymer (MIP), N-benzoyl-(S)-valine anilide-imprinted polymer (IP-2), was prepared using hydrogen-bonding interactions as a main force in the pre-polymerization step. The performance of the IP-2 was evaluated via batch procedure and compared with a (S)-valine anilide-imprinted polymer (IP-1) that was prepared using an ionic interaction that is stronger than hydrogen bonding. Although both polymers showed a preferential adsorbability for (S)-amino acid derivatives, different performances were observed in terms of adsorbability and enantioselectivity. In addition, the IP-2 was able to recognize the enantiomer of a valine-derived chiral catalyst. This phenomenon was applied to a chiral amplification reaction, and a highly selective asymmetric Mannich-type amination was achieved using the combination of a racemic catalyst and a MIP
Template and target information: N-benzoyl-(S)-valine anilide, (S)-valine anilide
Author keywords: molecularly imprinted polymer, chiral recognition, (S)-benzoyl amino acid anilide, asymmetric amplification