Abstract: ZnO quantum dots (QDs) based molecularly imprinting polymer (MIP)-coated composite was described for specific detection of the dimethoate (DM) as a template. The MIP was synthesized by simple self-assembly of 3-aminopropyl triethoxysilane (APTES) monomers and tetraethyl ortho-silicate as cross linking agent in the presence of template molecules. The used imprinting course can improve the tendency of the prepared QDs toward the DM template molecules. The MIP-coated ZnO QDs showed a strong fluorescence emission which undergoes a quenching effect in the presence of DM. So, a selective probe could be designed based on these composites to recognize DM in water samples. Under optimized experimental conditions, a linear relationship between the emission intensity of MIP-coated ZnO QDs and concentration of DM, in the range of 0.02-3.2 mg L-1 with a detection limit of 0.006 mg L-1. Combination of high specificity of MIP element and distinct fluorescence features of ZnO QDs provides a sensitive and selective recognizing method for pesticide detection. The developed method was successfully applied for the determination of DM contamination in environmental water samples
Template and target information: dimethoate, DM
Author keywords: ZnO quantum dots, molecularly imprinting polymer, Dimethoate, pesticide, fluorescence quenching