MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Zhang ZL, Zhang XD, Niu DC, Li YS, Shi JL
Article Title: Large-pore, silica particles with antibody-like, biorecognition sites for efficient protein separation.
Publication date: 2017
Journal: Journal of Materials Chemistry B
Volume: 5
Issue: (22)
Page numbers: 4214-4220.
DOI: 10.1039/C7TB00886D

Abstract: Natural antibodies are used widely for various applications such as in biomedical analysis, protein separation, and targeted-drug delivery, but they suffer from high cost and low stability. In this study, we developed a facile approach for the construction of antibody-like binding sites in a porous silica solid for efficient separation of bovine serum albumin (BSA) based on large-pore silica particles (LPSPs). This was accomplished by grafting two types of organosilane monomers, 3-aminopropyltriethoxylsilane (APTES) and octyltrimethoxysilane (OTMS), to provide hydrogen bonds or hydrophobic interactions with BSA through molecular imprinting technology. The resulting molecularly imprinted, large-pore silica particles (MI-LPSPs) were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG), X-ray diffraction (XRD) and N2 sorption analysis. Results showed that the as-synthesized MI-LPSPs exhibited a spherical morphology, favorable stability and large pore structure. The kinetic adsorption experiments showed that the MI-LPSPs could reach equilibrium within one hour and were described well by the pseudo second-order model, indicating that chemical adsorption might be the rate-limiting step. Meanwhile, the MI-LPSPs had a large binding capacity up to 162.82 mg g-1 and high selectivity for the recognition of BSA. Moreover, such a high binding capacity and selectivity was retained after six runs, indicating a good stability and reusability of MI-LPSPs. Thus, it is expected that a simple synthetic methodology in the present study provides a promising pathway to prepare novel imprinted materials for efficient purification and separation of target proteins
Template and target information: protein, bovine serum albumin, BSA


  Mister Benzene shirt  Chemistry peptide mug  Beach bunny periodic table shirt






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner