Abstract: The preparation and application of reagentless electrochemical thrombin molecularly imprinted sensors were studied using multiwalled carbon nanotubes as sensitivity-enhanced materials. The molecularly imprinted polymer film was prepared by the electropolymerization of o-phenylenediamine with thrombin as the template molecule onto the surface of multiwalled carbon nanotubes modified glassy carbon electrode. After removing thrombin, the poly-o-phenylenediamine molecularly imprinted film was obtained with specific recognition for thrombin. Using the poly-o-phenylenediamine molecularly imprinted polymers as the electron probe, the electrochemical molecularly imprinted sensor was fabricated for the detection of the protein thrombin. Under optimized experimental conditions, the sensor exhibited a good linear response from 10.0 fg/mL to 1.0 μg/mL for thrombin, with correlation coefficient 0.999 and a low detection limit of 1.7 fg/mL. The fabricated molecularly imprinted sensor can be applied to the detection of thrombin in actual sample bovine serum with satisfactory results
Template and target information: protein, thrombin
Author keywords: Molecularly imprinted polymer sensor, Multiwalled carbon nanotubes, Thrombin, electropolymerization, o-phenylenediamine