Abstract: To develop efficient materials with enhanced adsorption and selectivity for genotoxic 2-aminopyridine in water, based on magnetic chitosan (CTs) and β-cyclodextrin (β-CD), the magnetic molecularly imprinted polymers (MMIPs) of Fe3O4-CTs@MIP and Fe3O4-MAH-β-CD@MIP were synthesized by a molecular imprinting technique using 2-aminopyridine as a template. The selective adsorption experiments for 2-aminopyridine were performed by four analogues including pyridine, aniline, 2-amino-5-chloropyridine and phenylenediamine. Results showed the target 2-aminopyridine could be selectively adsorbed and quickly separated by the synthesized MMIPs in the presence of the above structural analogues. The coexisting ions including Na+, K+, Mg2+, Ca2+, Cl- and SO42- showed little effect on the adsorption of 2-aminopyridine. The maximum adsorption capacity of 2-aminopyridine on Fe3O4-CTs@MIP and Fe3O4-MAH-β-CD@MIP was 39.2 mg g-1 and 46.5 mg g-1, respectively, which is much higher than values in previous reports. The comparison result with commercial activated carbon showed the obtained MMIPs had higher adsorption ability and selectivity for 2-aminopyridine. In addition, the synthesized MMIPs exhibited excellent performance of regeneration, which was used at least five times with little adsorption capacity loss. Therefore, the synthesized MMIPs are potential effective materials in applications for selective removal and analysis of the genotoxic compound aminopyridine from environmental water
Template and target information: 2-aminopyridine
Author keywords: Aminopyridine, Magnetic molecularly imprinted polymer, selective adsorption, chitosan, β-cyclodextrin, Genotoxic compounds