Abstract: Photoirradiation surface molecularly imprinted polymers for the separation of 6-O-α-d-maltosyl-β-cyclodextrin were synthesized using functionalized silica as a matrix, 4-(phenyldiazenyl)phenol as a light-sensitive monomer, and 6-O-α-d-maltosyl-β-cyclodextrin as a template. Fourier transform infrared spectroscopy results indicated that 4-(phenyldiazenyl)phenol was grafted onto the surface of functionalized silica. The obtained imprinted polymers exhibited specific recognition toward 6-O-α-d-maltosyl-β-cyclodextrin. Equilibrium binding experiments showed that the photoirradiation surface molecularly imprinted polymers obtained the maximum adsorption amount of 6-O-α-d-maltosyl-β-cyclodextrin at 20.5-ámg/g. In binding kinetic experiments, the adsorption reached saturation within 2-áh with binding capacity of 72.8%. The experimental results showed that the adsorption capacity and selectivity of imprinted polymers were effective for the separation of 6-O-α-d-maltosyl-β-cyclodextrin, indicating that imprinted polymers could be used to isolate 6-O-α-d-maltosyl-β-cyclodextrin from a conversion mixture containing β-cyclodextrin and maltose. The results showed that the imprinted polymers prepared by this method were very promising for the selective separation of 6-O-α-d-maltosyl-β-cyclodextrin
Template and target information: 6-O-α-d-maltosyl-β-cyclodextrin
Author keywords: branched cyclodextrins, Molecularly imprinted polymers, photoirradiation, silica particles