MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Yoshimi Y, Yagisawa Y, Yamaguchi R, Seki M
Article Title: Blood heparin sensor made from a paste electrode of graphite particles grafted with molecularly imprinted polymer.
Publication date: 2018
Journal: Sensors and Actuators B: Chemical
Volume: 259
Page numbers: 455-462.
DOI: 10.1016/j.snb.2017.12.084
Alternative URL: https://www.sciencedirect.com/science/article/pii/S0925400517324103

Abstract: A real-time heparin monitor could be used to optimize the dosage of heparin during extracorporeal circulation procedures. This report describes the development of a graphite-paste (GP) electrode with molecularly imprinted polymer (MIP) grafted onto it. Heparin-imprinted poly (methacryloxyethyltriammonium chloride -co- acrylamide -co- methylenebisacrylamide) was grafted directly onto graphite particles. The grafted particles were thoroughly mixed with oil to fabricate the MIP-GP electrode. Traditional cyclic voltammetry was performed with the electrode in physiological saline or bovine whole blood containing 5 mM ferrocyanide and 0-8 units/mL heparin. The current intensity increased with heparin concentration, due to expansion of the effective surface area resulting from heparin-promoted mobility of the oil in the MIP-GP electrode. No significant difference was found in the sensitivity of the current to unfractionated heparin among the electrodes fabricated because of the electrode homogenization resulting from thorough mixing of the MIP-grafted particles and oil. (A previous MIP-grafted indium tin oxide electrode exhibited lower sensitivity in blood than in saline.) Only 60 s were needed to stabilize the current. The current at the MIP-GP electrode was also sensitive to low-molecular-weight heparin in blood, but insensitive to chondroitin sulfate C (CSC), which is a heparin analog. The non-imprinted polymer (NIP)-grafted electrode was insensitive to heparin. Thus, the MIP-GP electrode, which operated through a new heparin-sensing mechanism, is an excellent candidate for application as a disposable sensor to monitor heparin levels in blood
Template and target information: heparin
Author keywords: molecularly imprinted polymer (MIP), Heparin, Graphite paste electrode, voltammetry


  Double Bonds spoof movie poster mug  Chemistry peptide mug  Chemists are fun customisable shirt






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner