MIPs logo MIPdatabase      MIP2018 Conference website
Custom Search
Reference type: Journal
Authors: Bagheri N, Khataee A, Habibi B, Hassanzadeh J
Article Title: Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin.
Publication date: 2018
Journal: Talanta
Volume: 179
Page numbers: 710-718.
DOI: 10.1016/j.talanta.2017.12.009
Alternative URL: https://www.sciencedirect.com/science/article/pii/S0039914017312110

Abstract: Here, Ag nanoparticle/flake-like Zn-based MOF nanocomposite (AgNPs@ZnMOF) with great peroxidase-like activity was applied as an efficient support for molecularly imprinted polymer (MIP) and successfully used for selective determination of patulin. AgNPs@ZnMOF was simply synthesized by creating Ag nanoparticles (Ag NPs) inside the nano-pores of flake-like (Zn)MOF. The high surface area of MOF remarkably improved the catalytic activity of Ag NPs which was assessed by fluorometric, colorimetric and electrochemical techniques. Furthermore, it was observed that patulin could strangely reduce the catalytic activity of AgNPs@ZnMOF, probably due to its electron capturing features. This outcome was the motivation to design an assay for patulin detection. In order to make a selective interaction with patulin molecules, MIP layer was created on the surface of AgNPs@ZnMOF by co-polymerization reaction of 3-aminopropyl triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) monomers wherein patulin was applied as template agent. Combination between the selective identifying feature of MIP and outstanding peroxidase-like activity of novel AgNPs@ZnMOF nanocomposite as well as the sensitive fluorescence detection system was led to the design of a reliable probe for patulin. The prepared MIP-capped AgNPs@ZnMOF catalyzed the H2O2-terephthalic acid reaction which produced a high florescent product. In the presence of patulin, the fluorescence intensity was decreased proportional to its concentration in the range of 0.1-10 μmol L-1 with a detection limit of 0.06 μmol L-1. The proposed method was able to selectively measure patulin in a complex media without significant interfering effects from analogue compounds
Template and target information: patulin
Author keywords: Ag nanoparticles, MOF nanocomposites, Peroxidase-like activity, patulin


  Mister Benzene and Mister Cyloheptatetraene shirt  Chemistry peptide mug  Beach bunny periodic table shirt

Molecules Special Issue call






Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:
US listings   UK listings

Searching for Molecular Imprinting books on Amazon.com:
Molecular Imprinting
Imprinted Polymers
Polymer Chemistry
Organic Chemistry
Biosensors

Find what you need at Amazon.com

Lab supplies from Amazon