Abstract: This paper reports on the development of electrochemical sensors for the detection of multiple neurotransmitters using molecularly imprinted polymers (MIPs). Pyrrole (PPy) and o-phenylenediamine (o-PD) were used as functional monomers for the MIP sensor development, and the characteristics of those sensors were analyzed. Specifically, we demonstrate a selective detection of dopamine (DA), norepinephrine (NE), and epinephrine (EP) by applying differential pulse voltammetry (DPV) to each uniquely developed MIP-based sensor. Furthermore, the selectivity of the analyte was quantified based on the sensitivity matrix. Our results demonstrate that all MIP sensors possessed higher sensitivity than non-imprinted (NIP) sensors due to the unique molecular receptors. The detection limits of the developed MIP sensors were less than 1.3 x 10-5 M. The uniqueness of the cross-reactivity in the DA-imprinted and EP-imprinted sensors demonstrate the possibility of implementing a multi-analyte sensing platform that can detect multiple neurotransmitters simultaneously from a single sample solution
Template and target information: neurotransmitters, dopamine, DA, norepinephrine, NE, epinephrine, EP, adrenalin
Author keywords: conducting polymers, molecular imprinting, Neurotransmitters, differential pulse voltammetry, polypyrrole, o-phenylenediamine