Abstract: In this work, a novel core-shell magnetic molecularly imprinted polymers (MMIPs) for the measurement of L-Hydroxyproline (Hyp) in dairy products was prepared. The derivative of Hyp using N-hydroxysuccinimidyl rhodamine B ester (RBS) as derivatization reagent was employed as template to prepare RBS-Hyp-MMIPs (Fe3O4@MIPs for RBS-Hyp). A new analytical procedure of in situ derivatization with MMIPs (ISD-MMIPs) has been developed for the specific extraction and determination of Hyp in dairy products by ultra high performance liquid chromatography tandem mass spectrometry. The RBS-Hyp-MMIPs was characterized by fourier transform infrared spectrometer and transmission electron microscopy, and evaluated by adsorption experiments. The adsorption process followed Langumuir adsorption isotherm with maximum adsorption capacity of RBS-Hyp on RBS-Hyp-MMIPs at 96 mg/g. In addition, RBS-Hyp-MMIPs showed a short equilibrium time (15.0 min), rapid magnetic separation (5 s) and high stability (retained 95.3% after six cycles). Under the optimized conditions, good linearity was observed with the limits of detection (S/N > 3) and limits of quantification (S/N > 10) at 0.1 and 0.5 ng/mL, respectively. On account of the specific extraction performance of RBS-Hyp-MMIPs, not any interference peak from real sample matrix was observed in the chromatograms of milk powder, liquid milk and milk drink. The proposed procedure was successfully applied for selective determination of Hyp from dairy products with satisfactory validation results, which is of great significance to food safety
Template and target information: N-hydroxysuccinimidyl rhodamine B ester, RBS, L-hydroxyproline, Hyp
Author keywords: L-Hydroxyproline, In situ derivatization, Magnetic molecularly imprinted polymer, Specific extraction, Dairy products