Abstract: We herein report a three-component cell-mimicking structure with a peroxidase-like iron oxide nanozyme as the nucleus, a molecularly imprinted hydrogel shell as cytoplasm, and a lipid bilayer membrane. The structure was characterized by cryo and negative stain TEM and also by a calcein leakage test. By introducing charged monomers, the gel shell can swell or shrink in response to salt concentration. By lowering the salt concentration, the gradual "analog" gel volume change was reflected in a switch-like "digital" colorimetric output by the burst of membrane and oxidation of substrates such as 3,3',5,5'-tetramethylbenzidine (TMB). Controlled access was also achieved by using melittin to insert channels cross the membrane, and selective molecular transport was realized by the molecularly imprinted gel. The functions of each component are coupled, and this sophisticated tripartite structure provides a new platform for modular design of new materials. Our cell-mimicking structure is functional and it is complementary to the current protocell work that aims to understand the origin of life
Template and target information: 3,3',5,5'-tetramethylbenzidine, TMB
Author keywords: cell-mimicking, Molecularly imprinted polymers, nanozymes, protocells