MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Tavares APM, Sales MGF
Article Title: Novel electro-polymerized protein-imprinted materials using Eriochrome black T: Application to BSA sensing.
Publication date: 2018
Journal: Electrochimica Acta
Volume: 262
Page numbers: 214-225.
DOI: 10.1016/j.electacta.2017.12.191
Alternative URL: http://www.sciencedirect.com/science/article/pii/S0013468617327652

Abstract: A novel material produced in-situ by electropolymerization of Eriochrome black T (EBT) is presented for the first time to produce a molecularly-imprinted polymer (MIP) tailored for protein recognition. This monomer is particularly useful because it contains in the same structure different functions that may interact with different sites within the same protein (by ionic interaction of hydrogen bonding). The polymer was poly(EBT) (PEBT) and was obtained by applying on a carbon support a suitable range of potential values, established by cyclic voltammetry (CV) along consecutive cycles. In a parallel approach, the carbon support was modified by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) prior to the MIP synthesis, thereby yielding a substrate of better electrical properties and checking this effect upon the resulting biosensor. The two above approaches used BSA as model target protein. The polymeric material acted as a plastic antibody for BSA and was obtained through a bulk imprinting strategy, by electropolymerizing EBT in a solution that also contained the target protein. The chemical features were followed by Raman spectroscopy while the electrical properties were followed by electrochemical impedance spectroscopy (EIS). The electrical properties tested were the stability of polymeric film within time, the main analytical features of the calibration curves under different media and the selectivity properties. The thermal stability was also tested by thermogravimetric assays. Overall, the novel polymeric film displayed good thermal and storage stabilities, which are fundamental features in biosensor development. Both MIP and MIP-PEDOT displayed linear responses over a wide range of concentrations and similar detection limits. The MIP-PEDOT material was 9 x more sensitive to the presence BSA concentration. The analytical responses of the biosensor to spiked serum confirms the promising features of the described approach
Template and target information: protein, bovine serum albumin, BSA
Author keywords: Eriochrome black T, protein imprinting, electrochemical impedance spectroscopy, conducting polymer, molecularly imprinted polymer


  Mister Benzene shirt  Chemistry peptide mug  Beach bunny periodic table shirt






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner