Abstract: This article describes the development, optimization, and evaluation of a novel composite imprinted polymer, on the basis of magnetic halloysite nanotubes (MHNTs-MIPs) using "Quality by Design (QbD)" approach combining computer simulation and response surface methodology. Norfloxacin, methacrylic acid, and ethylene glycol dimethacrylate were used as template, functional monomer and cross-linker, respectively. As a comparison, two MHNTs-MIPs have been prepared with the most suitable functional monomer methacrylic acid (MAA) along with acrylamide (AM). To explain the adsorption behavior, adsorption kinetics and isotherms were studied. Magnetic halloysite nanotubes molecularly imprinted polymers prepared from MAA (MHNTs-MIP1) displayed a high adsorption capacity (349 μg mg-1) toward NOR. A magnetic imprinting solid phase extraction method coupled with high performance liquid chromatography (MHNTs-MISPE-HPLC-UV) was developed for the determination of NOR in serum and water samples, by applying MHNTs-MIP as a sorbent. The recoveries from 83.76% to 103.30% in water and from 90.46% to 99.78% in serum were obtained. Besides remarquable mechanical properties and specific recognition of MHNTs-MIP toward template molecule. It could be also collected and separated fastly by external magnetic field. Moreover, MHNTs-MIPs could be reused for several cycles with the recovery range from 83.25% to 100.96% for water sample and from 85.65% to 100.33% for serum sample. These analytical results of serum and water samples showed that the proposed method based on MHNTs-MIPs is applicable for fast and selective extraction of therapeutic agents from biological fluids and environmental water
Template and target information:
Author keywords: Halloysite Nanotubes, magnetic imprinted polymers, solid phase extraction, norfloxacin, serum samples, environmental water, QbD approach