Abstract: In this study, a series of imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) nanocarriers for diclofenac and corresponding nonimprinted polymer nanocarriers have been synthesized in 4 different types of solvents by precipitation polymerization. The products were characterized by Fourier transform infrared, scanning electron microscopy, dynamic light scattering, and Brunauer-Emmett-Teller measurement. Results showed that uniformly sized molecularly imprinted polymer (MIP) nanospheres with relatively good porosity could only be obtained in acetonitrile. The effects of solvents on the recognition and release properties of polymer particles were also carefully investigated. The binding experiments indicated that MIPs prepared in acetonitrile displayed much higher binding capacity than other MIPs with a maximum binding capacity of 65.18 mg g-1. The Scatchard analysis showed that synthetic MIPs have special recognition sites for diclofenac, while nonimprinted polymers have not. The Sips model could provide a best fit to the equilibrium data of nanocarriers over whole concentrations. The experimental data of an adsorption kinetic study were well fitted to the pseudo-second-order kinetic model, indicating the chemisorption mechanism between diclofenac and MIPs in the process of adsorption. The drug release of diclofenac from MIPs could well be described by the Ritger-Peppas model, suggesting a non-Fickian diffusion mechanism. In addition, we successfully used MIPs to extract diclofenac at low levels from fetal bovine serum
Template and target information: diclofenac
Author keywords: adsorption isotherms, Adsorption kinetics, different types of solvents, imprinted polymer nanocarriers, sustained release