Abstract: A facile, yet efficient method was proposed here to prepare the novel molecularly imprinted nanocomposite membranes (MICMs) with high adsorption capacity and rapid selective separation aiming at targeting norfloxacin. The MICMs were prepared by vacuum filtering directly pre-synthesized norfloxacin-imprinted nanocomposites to the regenerated cellulose membranes, which utilized adequately the dual-function effect of dopamine as crosslinking agent and functional monomer. Moreover, the best adsorption capacity and separation factor of MICMs toward target can reach up to 25.35 mg/g and 4.43, respectively, which were far superior to that of non-imprinted nanocomposite membranes (NICMs) (6.38 mg/g and 1.0, respectively). Meanwhile, the perm-selectivity (the permeability factor β values were also more than 15.2). And this work provided an exemplary guidance for the treatment of fluoroquinolones antibiotics pollutants in water environment
Template and target information: norfloxacin
Author keywords: MICMs, Channel internal modification, molecular recognition, selective separation, norfloxacin