MIPs logo MIPdatabase      MIP2020 Conference logo Use this space
Custom Search
Reference type: Journal
Authors: Moghaddas Kia E, Alizadeh M, Vardast MR, Rezazad M
Article Title: Separation of Gă─STIGMA STEROL using magnetic molecularly imprinted nanopolymer fabricated by sol-gel method.
Publication date: 2017
Journal: Journal of Urmia University Medical Sciences
Volume: 28
Issue: (4)
Page numbers: 44-53.
DOI: 10.18869/acadpub.umj.28.4.44
Alternative URL: http://umj.umsu.ac.ir/article-1-3715-en.html

Abstract: Background & Aims: Magnetically molecularly imprinted polymers (MMIPs) are assumed as kind of sorbent polymers ‎which can separate or determine bioactive compounds from environment fast and specifically. ‎Magnetic properties, stability at various conditions (temperature , ionic strength and pH) and selective ‎function are among the advantages of these polymers in determination of nutraceutical compound. In current research, a molecularly imprinted polymer synthesized by application of Fe3O4@SiO2 nanoparticles and its functional properties were ‎evaluated. Materials & Methods: In order to fabricate polymer, firstly Co‏-‏precipitation method was used for ‎manufacturing of magnetic Fe3O4 nanoparticles coated by ‎silica. Then stigmasterol imprinted ‎polymer were prepared by grafting sol-gel procedure. ‎Finally obtained polymer were eluted by ‎mixture of ethanol-water-chloroform to create specific sorbent cavities for stigmasterol. Polymer ‎was incubated with stigmasterol stock solution and binding capacity ‎was determined through high ‎performance liquid chromatography. Results: Structure and morphology of ‎samples were evaluated by FT-‎IR spectroscopy and scanning electron microscopy and Zeta sizer was used for determination of their zeta potential. ‎MMIPs ‎could separate ‎‏78% ‏‎ of stigmasterol from stock solution during 60 minutes and its binding ‎capacity was ‎‏19.5‏‎ mg/g. FT-IR spectrometry and zeta potential data revealed well-designed coating ‎of silica around magnetic Fe3O4‎ cores. Adsorbent silica layers were reinforced through sol-gel ‎polymerization method. Polymer morphology was porous, coarse and particle dimensions were ‎ less than 50 nanometers. Conclusion: So regarding separation and structural characteristics of properties these sorbents, the produced magnetically imprinted nanopolymer can be used for detection of stigmasterol as a neutraceutical compound
Template and target information: stigmasterol
Author keywords: Stigmasterol, molecularly imprinted polymer, magnetic Fe3O4@SiO2

  Aluminium periodic table shirt  Scientist peptide mug  I shop perodically customisable tote bag

Molecules Special Issue call      Appeal for information


Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.

Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:

Mickey Mouse 90th Anniversary banner