Abstract: A novel electrochemical sensor for diisononyl phthalate (DINP) analysis was investigated. The sensor was modified on a glassy carbon electrode (GCE) with DINP molecularly imprinted polymer particles (MIPs). The electrode was assembled by the mixture of MIPs and agarose in proportion. The MIPs were formed by bulk polymerization via non-covalent multiple interactions, which were further characterized by scanning electron microscopy (SEM). The linear response range of the MIP sensor was between 50 and 1000 nM, and the limit of detection (LOD) was 27 nM. The proposed system has the superiority of high-speed real-time detection capability, no sample pretreatment, simple operation process, little detection cost, short detection time, high sensitivity, low interference and good stability. Therefore, it shows the potential for application in food safety supervision of DINP
Template and target information: diisononyl phthalate, DINP
Author keywords: diisononyl phthalate molecularly imprinted polymer particles electrochemical sensor cyclic voltammetry