Abstract: In this work, a photoelectrochemical (PEC) sensor based on inorganic surface molecular imprinting Nb2O5 (MI-Nb2O5) for detection of bisphenol A (BPA) had been developed. In the PEC sensor, MI-Nb2O5 material was synthesized based on an in-situ surface molecular imprinting technique. The microstructure characteristics of the as-prepared photoactive materials were systematically investigated by XRD, SEM, TEM, XPS, FTIR and UV-vis spectroscopy. The PEC detection results showed that the MI-Nb2O5 material had higher photocurrent responses and excellent selectivity for contaminant BPA under UV-light irradiation owing to the abundant special recognition sites on the surface of MI-Nb2O5. Besides, the PEC sensor exhibited a wide detection range from 0.01 nmol L-1 to 30 nmol L-1 with a low limit of detection (LOD) of 0.004 nmol L-1. The interferences test showed that the sensor had a good selectivity to BPA molecules in the different interference solutions. This method combining molecular imprinting technique with photoelectrochemical detection measurement made a successful attempt to detect BPA and supplied a promising way to detect other environment pollutions rapidly and selectively in the future
Template and target information: bisphenol A, BPA
Author keywords: molecular imprinting technique, Nb2O5, Photoelectrochemical detection