MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Liu TW, Qiao ZY, Wang JL, Zhang P, Zhang ZD, Guo DS, Yang XL
Article Title: Molecular imprinted S-nitrosothiols nanoparticles for nitric oxide control release as cancer target chemotherapy.
Publication date: 2019
Journal: Colloids and Surfaces B: Biointerfaces
Volume: 173
Page numbers: 356-365.
DOI: 10.1016/j.colsurfb.2018.09.078
Alternative URL: http://www.sciencedirect.com/science/article/pii/S0927776518306921

Abstract: It is the goal for the development of cancer target chemotherapy with specific recognition, efficient killing the tumor cells and tissues to avoid the intolerable side effects. Molecular imprinted polymer (MIPs) nanoparticles could introduce kinds of specific bio-markers (template molecules) into the nanoparticles with the subsequent removal, leaving special holes in the structure with predictable recognition specificity with cells. Herein, we design and synthesize a kind of sialic acid (SA) over-expressed tumor target hollow double-layer imprinted polymer nanoparticles with S-nitrosothiols for nitric oxide (NO)-releasing as chemotherapy. Equilibrium/selective bindings properties and probe experimental results implies that the MIPs have an intelligently selective binding to cancer cells featuring high levels of SA glyans, providing precondition for the disulfide polymer assisted cell uptake, intracellular GSH induced decomposition and rapid NO-releasing. Cytotoxicity assay with kinds of cells demonstrates the intelligent in vitro SA over-expressed tumor cells targeting recognition, intracellular delivery and cytotoxicity. In vivo bio-distribution in tumor sites and major organs, significant suppression of tumor growth, tumor-bearing mice survival unit, and the systemic toxicity investigation experiments confirm the effective chemotherapy of the S-nitrosothiols MIPs nanoparticles for the target recognition and the controlled NO release for tumor treatment comparing to the results with S-nitrosothiols CPs as delivery system. The inevitable small amount of NO leakage from S-nitrosothiols MIPs would take part in normal physiological activities and not cause serious side effects. For the first time, this kind of nitric oxide based chemotherapy and molecular-imprinting cell recognition technique both in vitro and in vivo, might provide a solution for accurate therapy to various forms of cancer with specific markers and avoid the intolerable side effects of the traditional chemotherapy treatment
Template and target information: sialic acid, SA
Author keywords: molecular imprinted polymer, nitric oxide, Target chemotherapy, cancer, Nanoparticle


  mipdatabase.com logo imprinters do it in bulk shirt  Science Teacher peptide mug  Perpetual student shirt






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner