Abstract: In this work, molecularly imprinted polymers (MIPs) were prepared with vinyl-coated magnetic particles (Fe3O4@VTEO) as the support material, deep eutectic solvent (DES) based on vinyl as the functional monomer, respectively. N,N-methylenebisacrylamide (MBAAm) was used as the crosslinker on account of its abundant carbon-carbon double bonds. The MIPs were prepared with the addition of bovine hemoglobin (BHb) acted as the template. The MIPs particles can be collected quickly by a magnetic field. The composition and morphology of the MIPs particles were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), fourier transform infrared spectrometry (FT-IR) and thermo-gravimetric analysis (TGA). X-ray diffraction (XRD) was used to illustrate the cubic inverse spinel structure of Fe3O4. Meanwhile, vibrating sample magnetometer (VSM) was applied to characterize the magnetism of the MIPs. Adsorption experiments were performed to attain the optimum adsorption conditions. Under the optimized conditions, the obtained maximum adsorption capacity (Q, mg g-1) of the MIPs particles is found to be 164.20 mg g-1, and the imprinting factor (IF) is 4.93. Four reference molecules were used to test the selectivity of the MIPs particles, which indicates that the recognition sites can adsorb template molecules with selectivity. Furthermore, the prepared magnetic MIPs particles were applied to capture BHb from the real samples (calf blood) effectively
Template and target information: bovine hemoglobin, BHb, protein
Author keywords: Deep eutectic solvent, Molecularly imprinted polymers, magnetic particles, Bovine hemoglobin, adsorption