Abstract: Using molecularly imprinted polymer as a selective adsorbent for gaseous toxicants is a novel attempt. In present work, a nicotine surface-imprinted monolith (MIM) was used for the selective removal of nicotine from smoke. First, the retention capacity and selectivity for this MIM was tested by using it as the stationary phase in gas chromatography and chromatographic conditions optimized. Then, the gas phase adsorption isotherms of MIM were constructed and the adsorption thermodynamics explored. At last, the applicability for MIM in the removal of nicotine in smoke was explored. Results indicated a stronger retention capacity and a higher selectivity of MIM toward the template vapor, with a capacity factor (87.88) and a selectivity factor (10.15) under the optimized conditions. A higher standard adsorption enthalpy change for this MIM toward the template (Δ Ha0 = 65.53 kJ mol-1) than that for the non-imprinted monolith (NIM) column (Δ Ha0 = 47.46 kJ mol-1) was observed. The adsorption isotherm for MIM appears the BET type II shape, while that for the NIM was approximately linear. When this MIM was used as the adsorbent, it exhibited a high performance in the selective removal of nicotine from the main stream smoke, with an adsorption percentage of 99.43%
Template and target information: nicotine
Author keywords: molecularly imprinted polymer, Surface-imprinted monolith, nicotine, selective removal, adsorption