MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Pereira AC, Braga GB, Oliveira AEF, Silva RC, Borges KB
Article Title: Synthesis and characterization of molecularly imprinted polymer for ethinylestradiol.
Publication date: 2019
Journal: Chemical Papers
Volume: 73
Issue: (1)
Page numbers: 141-149.
DOI: 10.1007/s11696-018-0557-9

Abstract: Ethinylestradiol (EE2) is considered an emerging pollutant with high capacity for endocrine disruption. Thus, methodologies and materials applied to the monitoring of this compound are relevant to minimize environmental impacts. In this work, a synthetic route for molecularly imprinted polymers (MIPs) was proposed, employing EE2 and methacrylic acid as template molecule and functional monomer, respectively. The synthesized material showed effective "molecular memory", leading to selective molecular rebinding, when compared to its reference polymer: non-imprinted polymer (NIP). These results, from MIP versus NIP, were evidenced by the characterization by high-performance liquid chromatography, where the peak area was smaller for the MIP, which indicates its greater selective adsorption; and differential pulse voltammetry, where the electrochemical signal was higher for the electrode configured with MIP. Therefore, two distinct methodologies proved the presence of selective sites along the polymer matrix. For the structure of the MIP, the SEM confirms an irregular particle size, giving the material a low uniformity, and an apparent roughness. However, the IV-TF confirms the presence of different functional groups along the polymer matrix, which may contribute to the functionality of the selective sites. Given the effective synthetic proposal and the characterization of IPM, it emerges as a material potential for application in EE2 monitoring. The present work contributed with two innovations; the implementation of the evaluation of the analytical response of the washing water of the MIP using an electrochemical technique (VPD) soon shows the important process of removal of the model molecule and the availability of the selective sites; and the synthesis of an MIP for EE2
Template and target information: ethinylestradiol, EE2
Author keywords: Molecularly imprinted polymers, MIPs, Ethinyl estradiol, emerging pollutants, liquid chromatography


  Periodic table Banana Split - the chemical formula for banana split shirt  Periodic table Bag bag    mug featuring the template Estradiol






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner