MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Dai XJ, Wu YF, Jia ZH, Bo CM
Article Title: Preparation of water-compatible magnetic imprinted nanospheres using heptakis (β-cyclodextrin-ionic liquid) as functional monomer for selective recognition of fluoroquinolones in water samples.
Publication date: 2021
Journal: Microchemical Journal
Volume: 171
Article Number: 106793.
DOI: 10.1016/j.microc.2021.106793
Alternative URL: https://www.sciencedirect.com/science/article/pii/S0026265X21008791

Abstract: In this study, a magnetic molecularly imprinted polymer (MMIP) with a well-defined core-shell nanostructure for extracting fluoroquinolones (FQs) using heptakis (β-cyclodextrin-ionic liquid) (ILs(2)-βCD), ofloxacin (OFL), triallyl cyanate (TAC), and azobisisobutyronitrile as the functional monomer, template molecule, crosslinking agent, and initiator, respectively, has been directly fabricated in water-containing systems. The morphology, structure, and magnetic properties of the MMIP were characterized using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). Recombination experiments and competitive adsorption experiments showed that the imprinted material, MMIP, has a good binding capacity (35.85 mg/g), special selectivity, and excellent ability to eliminate matrix interference. Its molecular recognition mechanisms were investigated by the experimental validation with ultra-violet spectroscopy (UV) and proton nuclear magnetic resonance (1HNMR), which inferred that hydrophobic and electrostatic interactions are the driving forces for the selective recognition of MMIP. By coupling the MMIP adsorbent with high-performance liquid chromatography, an approach was established to enhance the selective recognition of four structurally similar FQ compounds in real water samples. Several main factors affecting extraction efficiency, such as the sample solution pH value, MMIP dosage, and elution solvent type, were preliminarily optimized. Under the optimal conditions, the method has a good linear relationship (R2 greater than 0.9990) over a wide range (0.5-1000 μg/L). The recoveries of the four FQs ranged from 80.11% to 106.71%, and the limits of detection were between 0.43 and 1.83 μg/L. The results show that this water-compatible molecularly imprinted polymer has broad application prospects for efficient identification and separation as well as enrichment of trace FQs in complex matrices
Template and target information: fluoroquinolones, FQs, ofloxacin, OFL
Author keywords: Magnetic molecularly imprinted polymers, β-cyclodextrin-ionic liquid, Fluoroquinolones, special selectivity, Water-compatible molecularly imprinted polymer


  Mister Benzene Leaving card  Chemistry peptide mug  Beach bunny periodic table shirt






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner